
Page 1 Euclid: Supporting Collaborative Argumentation with Hypertext

Listen to Your Hack
Bernard Bernstein and Chris DiGiano

Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80309-0430
bernard@cs.colorado.edu

digi@cs.colorado.edu

Abstract
When writing code in an event-oriented environment, many things may happen at any
given time. Debugging environments provide the programmer feedback about the execution
of the code, but the information is often limited to textual snapshots of the program state.
With the use of audio debugging points, one can “listen” to the code as it executes and hear
when something wrong happens. This paper describes what a sonic debugger might sound
like and how it would work.

Introduction

In the 1960's intrepid hardware hackers
rigged a speaker to some of the machine's
hardware registers. Programmers used the
sounds emitted from the speaker to
monitor their code as it compiled and
executed. Those with enough experience
could identify compile stages by their
sounds and distinguish between good and
bad sounds for their running code. Today it
seems we have all but forgotten those
computer audio pioneers. Debugging is
now almost exclusively a textual activity,
relegating the speaker to arcade games
and SysBeeps.

In most respects today’s debugging
techniques are far more sophisticated than
those of thirty years ago. Debuggers
provide useful snapshots of the state of the
machine at various points during the
execution of a program. Where traditional
debuggers fail is in monitoring the ongoing
activities of executing code. Debuggers
provide little overall sense of how the
program is progressing. A profiler provides
feedback about what sections of code were
executed, but this is only available as a
post-mortem dump.

By contrast, when driving an automobile
we are almost bombarded by a constant
stream of feedback pertaining to the

performance of the vehicle. Much of this
information takes the form of sound. If a
“klunk” or a “digadigadiga” or a
“tickticktick” occurs, the driver knows
immediately something is wrong with the
car. When a good mechanic hears the
sound, he or she can often identify the
exact problem.

Audio feedback has the potential of being
equally valuable for software developers.
With sound, a programmer might be able to
identify when the code is “puttering along”
correctly, or when something seems wrong
about the program.

This paper explores the idea of a low level
sonic debugger to facilitate Macintosh
hacking. We first postulate what a program
would sound like using a sonic debugger.
We then describe some specific examples of
when a sonic debugger could help
programmers identify otherwise hard to
locate problems. The paper presents a list
of some features that a useful sonic
debugger should have, and concludes by
proposing some methods of hacking a sonic
debugger.

Previous Work

Listen to your Hack Page 1

Page 2 Euclid: Supporting Collaborative Argumentation with Hypertext

Earlier work with sound and programming
suggests that audio indeed has an
important role to play in the software
development cycle. Jackson and Francioni
(1992) demonstrated that carefully
designed “auralizations” of parallel
programs could improve programmers’
understanding of an algorithm and even
help identify problems. Brown and
Hershberger (1992) produced a meaningful
sound track for animations of algorithms
which highlighted the power of the
combined modalities. Finally, user studies
of LogoMedia (DiGiano, 1992) indicated
that sound could in fact be used to find
bugs in programs and verify fixes.

The Procedural Orchestra
Audio feedback is useful for listening to
repetitive patterns. Our ears are extremely
sensitive to repetitive sounds and can
recognize an imperfection easily.

Continuous iterations of the event loop
offer one useful source of rhythmic
patterns in any Macintosh program.
Consider the possibilities if each event loop
iteration forms a measure in the musical
score of a program. The down-beat will be
the WaitNextEvent call. Of course,
WaitNextEvent gives time to other
processes in the machine, so there will be a
possibility of confounding sonic events. If
the user would prefer not to hear these
extraneous sounds, then the sonic
debugger will need to be deactivated
before the call to WaitNextEvent and
reactivated afterward.

After the event is received, several things
can happen in the next phase of the
musical measure. In the case of an update
event, a potentially huge number of
Quickdraw calls may be executed. We will
call this the Update Symphony (in D
minor). During this symphony, the windows
will be redrawn with their UpdateWindow
commands, which will, in turn, call many
Quickdraw functions to draw the windows.
In addition, the program-specific drawing
will occur with another potentially large
number of calls. Normally, many of the
Quickdraw calls are quite fast, because
they may be asked to draw in regions that

are still “valid” (not asked to be redrawn).
In those cases, one may hear many more
functions get called than are necessarily
causing actions.

In the case of a mouse-down event,
something will happen to a window or a
menu, or perhaps the context will switch to
one of the background applications. While
the mouse is down, an interlude will be
played which is under the user’s direction.
We will call this user solo the Cadenza. This
user solo will likely have some Quickdraw
calls giving the user feedback in some
graphical way to the status of the user’s
action. For example, if a menu is selected,
then the Menu Manager will be actively
displaying and hilighting the various menu
items while the cursor is over them.

When the mouse is released, something
more complex will probably happen as a
result of the mouse operation, such as a
menu selection. This will be the full
orchestra pouncing on the score
immediately following the user solo. We
hear the standard event loop rhythm
return, most likely beginning with the
Update Symphony.

By listening to the execution, the
programmer will become familiar with
certain auditory patterns associated with
sections of code. It is this familiarity with
the sounds that gives the listener the
ability to distinguish between correct and
incorrect execution of the code.

What Sounds Can Help Identify
Using a sonic debugger, one can listen for
patterns and inconsistencies in patterns. A
common sequence is generated by the
initialization, execution and cleanup of a
function. If a function is missing any of
these characteristic sound elements, then
there may be something wrong with it.

A common pair of sounds to listen for are
allocation and deallocation of memory. If a
function allocates memory, then there
should be some matching deallocation of
the same block somewhere in the program
or else a memory leak may exist.

Listen to your Hack Page 2

Page 3 Euclid: Supporting Collaborative Argumentation with Hypertext

Alternately, allocation can trigger a
sustained non-obtrusive background sound
which can only be turned off by its
matching deallocation. Memory leaks
would stand out as sounds that continue to
play after the program should have
deallocated all memory. When
programming in an object-oriented
language such as C++, one may ask the
debugger to begin a sound with an object’s
constructor and stop it when its destructor
is executed.

Listen to your Hack Page 3

Page 4 Euclid: Supporting Collaborative Argumentation with Hypertext

Another class of sounds one can listen for
are functions that are called at the wrong
time or the wrong number of times. For
example, when drawing takes place, it is
common for a program to draw shapes
multiple times when it is only necessary to
draw something once. This can impede the
performance of the program since the
drawing is sometimes a bottleneck in the
speed. The repeated auditory signature of a
function could make this problem explicit.
Thus, an improper calling of a function can
have the equivalent effect as a “klunk” in a
car engine.

Continuous sonic debugging means that
even if the machine bombs because of an
error in their code, hackers still have
auditory impressions of the execution trace
in their own human memory. This may be
the only record of the events leading up to
the crash if the failure corrupted the stack.

We cannot expect sounds to accurately
convey absolute information such as just
how much memory was allocated or exactly
what parameter were passed to a function.
Nonetheless, sonic debugging offers a rich
new set of methods for observing general
behavior. It may take time to become
sonically aware of your code, but once the
auditory associations are mastered, its
feedback can likely increase the speed of
finding certain bugs within code.

Since our goal is to find bugs, and not to
spend time learning how to use the
debugger, we need to suggest some
features that would make the sonic
debugger practical.

Features of a Sonic Debugger
A sonic debugger should be able to trigger
sound commands for most A-Traps in the
Macintosh system as well as for any
location within a program. Sound
commands can start or stop sounds, or
adjust a sound’s properties such as pitch,
volume, or duration.

A sonic debugger should allow audio points
to be arbitrarily enabled or disabled to
allow programmers to focus their listening

attention. The user should be able to
restrict sound generation to particular
functions or specific operating system
managers. For example, a user may only
want to hear sounds for Memory Manager
calls, or perhaps just for NewHandle and
DisposeHandle. This will allow hackers to
debug and optimize specific components of
the program.

A serious concern is the cacophony which
might result if every trap in the Macintosh
were continually associated with sound.
The hacker would not know if the sounds
were coming from his or her program or
from another process. WaitNextEvent,
therefore, may need to disable the auditory
feedback before other processes are given
time, and enable them when the program
continues.

Since the production of the sound may
interfere with the execution of the
program, an unobtrusive way of generating
sound would be to send it to an external
processor. A solution to this problem would
be to send messages to an external
Macintosh or to a Musical Instrument
Digital Interface (MIDI) (IMA, 1983)
instrument. All three systems mentioned in
the introduction use MIDI for sound
generation.

Sound events used by a sonic debugger
should be triggered synchronously by the
real-time execution of code. Naturally, this
will cause the execution of code to be
slowed. But, the advantage is that the
sounds are heard in context with the
appropriate sections of the actual running
program.

The programmer would have the choice of
whether to pause execution while a sound
is played or else simply wait long enough
for a sound command to be issued. Pausing
execution would allow sounds of arbitrary
length to be heard without interference
from other audio points. This would
facilitate non-musical sampled sounds and
even synthetic speech. Voice could be used
to say the name of the function being
executed, or perhaps a message like
“allocating handle” can be uttered by the

Listen to your Hack Page 4

Page 5 Euclid: Supporting Collaborative Argumentation with Hypertext

machine.

These features would make the system
feasible, but we still have not discussed
what the user interface to the debugger
will be.

Making the Sonic Debugger
A sonic debugger could take the form of a
Macintosh control panel which maintains a
list of traps. Each trap could be associated

Listen to your Hack Page 5

Page 6 Euclid: Supporting Collaborative Argumentation with Hypertext

with any sound. Each trap could also have
its sound enabled or disabled.

Another method would involve a dcmd for
MacsBug or the equivalent in another
debugger. Like the control panel, the
dcmd could assign sounds to traps. But, in
addition, it could assign sounds to specific
memory addresses so that when the
address was executed, the debugger could
generate sound commands. An additional
benefit of this method is that programmers
could provide custom auditory associations
for specific parts of their code using calls
to the debugger extensions to make the
sounds.

The common thread between both the
control panel and dcmd approaches is
that the sonic debugger needs to patch
every trap that may trigger a debugging
sound command. The patch must send a
message to a sound player module which
dispatches the appropriate sound
command.

The sound module could either pass the
appropriate commands to a MIDI device, or
it could generate the sounds itself. We
already discussed the problems with
generating the sounds on the same
machine as the debugger, so we will most
likely use a MIDI processor to execute the
auditory feedback.

Conclusions
Using traditional Macintosh debuggers we
are limited to a single textual feedback
mode. This representation allows us to see
a fine grained representation of the current
state of the machine and how it changes
into another state. With the added
dimension of sound, we gain several

benefits. We obtain feedback at a high
level, from which programmers can listen
to any operation, and one can use the
additional sense of audition to experience
their programs execution.

Sound expands our repertoire of debugging
techniques in new and exciting ways.
Unlike meaningless textual display points
which might fly across the screen, audio
points can provide an acoustic gestalt, or
overview of the program execution.
Problems such as excess redraws and
memory leaks can suddenly become
apparent through auditory feedback.

By combining traditional textual methods
with sonic debugging we can only expect
hacking productivity to increase. The
Macintosh is a multimedia machine. Let’s
take advantage of its capacity for sound to
elevate the art of hacking to a new level.

References
Brown, Marc H., and John Hershberger
(1992). Color and Sound in Algorithm
Animation. IEEE Computer 25 (12): 52-
63.

DiGiano, Christopher J. (1992). Visualizing
Program Behavior Using Non-Speech
Audio. MSc. Thesis, University of Toronto.

IMA (1983). Musical Instrument Digital
Interface Specification 1.0. IMA.

Jackson, Jay Alan, and Joan M. Francioni
(1992). Aural Signatures of Parallel
Programs. Proceedings of the Twenty-
Fifth Hawaii International
Conference on System Sciences, 218-
229.

Listen to your Hack Page 6

